Skip to main content
Jay B. Bikoff, PhD
Jay  B. Bikoff, PhD

Jay B. Bikoff, PhD

Assistant Member, St. Jude Faculty

Departments

Education

ScB – Brown University, Providence, RI
PhD – Harvard University, Cambridge, MA

Research Interests

The circuits directly tasked with controlling movement reside in the spinal cord, where diverse collections of interneurons receive input from sensory and descending systems to control motor neuron firing and muscle contraction. Despite their critical role in influencing movement, the functional organization of spinal circuits that govern motor output remains enigmatic. Our work takes advantage of the genetic accessibility of mice to dissect the identity, connectivity, and function of neurons in the spinal motor system, with the goal of understanding how they interact with sensory input and descending systems from the brain to control movement. The lab focuses on three general areas of research:

  • Cell type diversity in the nervous system
  • Connectivity of spinal motor circuits
  • Function of spinal circuits in motor control

Selected Publications

Chapman PD, Kulkarni AS, Trevisan AJ, Han K, Hinton JM, Deltuvaite P, Fenno LE, Ramakrishnan C, Patton MH, Schwarz LA, Zakharenko SS, Deisseroth K, Bikoff JB. A brain-wide map of descending inputs onto spinal V1 interneurons. Neuron. 2025 Feb 19;113(4):524-538.e6. doi: 10.1016/j.neuron.2024.11.019. 

Worthy AE, Anderson JT, Lane AR, Gomez-Perez L, Wang AA, Griffith RW, Rivard AF, Bikoff JB, and Alvarez FJ. Spinal V1 inhibitory interneuron clades differ in birthdate, projections to motoneurons and heterogeneity. eLife 13:RP95172, 2024. DOI: 10.7554/eLife.95172.3.

Hughes AC, Pittman BG, Xu B, Gammons JW, Webb CM, Nolen HG, Chapman PD, Bikoff JB, Schwarz LA. A single-vector intersectional AAV strategy for interrogating cellular diversity and brain function. Nat Neurosci 27:1400–1410, 2024. DOI:10.1038/s41593-024-01659-7.

Deska-Gauthier D, Borowska-Fieldin J, Jones C, Zhang H, MacKat CS, Michail R, Bennett LA, Bikoff JB, Zhang Y. Embryonic temporal-spatial delineation of excitatory spinal V3 interneuron diversity. Cell Reports 43:113635, 2023. DOI: 10.1016/j.celrep.2023.113635.

Lane AR, Cogdell IC, Jessell TM, Bikoff JB, Alvarez FJ.Genetic targeting of adult Renshaw cells using a Calbindin 1 destabilized Cre allele for intersection with Parvalbumin or Engrailed1Sci Rep 11:19861, 2021. https://doi.org/10.1038/s41598-021-99333-6

Salamatina A, Yang JH, Brenner-Morton S, Bikoff JB, Fang L, Kintner CR, Jessell TM, Sweeney LB. Differential loss of spinal interneurons in a mouse model of ALS. Neuroscience 450:81-95, 2020.  https://doi.org/10.1016/j.neuroscience.2020.08.011

Bikoff JB. Interneuron diversity and function in the spinal motor system. Curr Opin Physiol 8:36-43, 2019. DOI:10.1016/j.cophys.2018.12.013

Hoang P, Chalif JI, Bikoff JB, Jessell TM, Mentis GZ, Wichterle H. Subtype diversification and synaptic specificity of stem cell-derived spinal interneurons. Neuron 100:135-149, 2018.

Sweeney LB, Bikoff JB*, Gabitto MI*, Brenner-Morton S, Baek M, Yang JH, Tabak EG, Dasen JS, Kintner CR, Jessell TM. Origin and segmental diversity of spinal inhibitory interneurons. Neuron 97:341-355, 2018. *equal contribution

Gosgnach S, Bikoff JB, Dougherty K, El Manira A, Lanuza G, Zhang Y. Delineating the diversity of spinal interneurons in locomotor circuits. J Neurosci 37(45):10835-10841, 2017.

Bikoff JB, Gabitto MI, Rivard AF, Drobac E, Machado TA, Miri A, Brenner-Morton S, Famojure E, Diaz C, Alvarez FJ, Mentis GZ, Jessell TM. Spinal inhibitory interneuron diversity delineates variant motor microcircuits. Cell 165:207-219, 2016.

Gabitto MI*, Pakman A*, Bikoff JB*, Abbott LF, Jessell TM, Paninski L. Bayesian sparse regression analysis documents the diversity of spinal inhibitory interneurons. Cell 165:220-233, 2016. *equal contribution

Ho HY, Susman MW, Bikoff JB, Ryu YK, Jonas AM, Hu L, Kuruvilla R, Greenberg ME. Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci 13:4044-4051, 2012.

Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR,  Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, Greenberg ME. EphB-mediated degredation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143:442-455, 2010.

Zhou P, Porcionatto M, Pilapil M, Chen Y, Choi Y, Tolias KF, Bikoff JB, Hong EJ, Greenberg ME, Segal RA. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 55:53-68, 2007.

Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development.  Proc Natl Acad Sci 104:7265-7270, 2007.

Fu WY, Chen Y, Sahin M, Zhao SS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AKY, Greenberg ME, Ip NY. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10:67-76, 2007.

Tolias KF*, Bikoff JB*, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45:525-538, 2005. *equal contribution

Wills Z, Emerson M, Rusch J, Bikoff J, Baum B, Perrimon N, Van Vactor D. A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding. Neuron 36:611-622, 2002.

Last update: April 2025

Close